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Abstract 

The two-dimensional  ant iphase-domain structures of  
Au2+xCdl_ x, which are two-dimensional ly modulated 
structures with a hexagonal  cell [a -- 2 .919 (4), c = 
4 .808 (7) ,/k] and the wavevectors  k I -- N ( a *  + b*)/M, 
k 2 = N ( -  a* + 2b*)/M, were considered based on the 
five-dimensional description of  modulated structures. 
The refinement of  the structure with N / M  = 3/7 (7a 
structure) of  AuECd was carried out by using a model 
with two positional,  two thermal  and one occupat ional  
parameters  based on the five-dimensional space group 
ppP6Jmmc and gave R factors of  0 .065,  0 .049 and 0 .17  6 I mm 
for all, fundamental  and satellite reflections, respec- 
tively. The displacement  wave was almost  longitudinal 
in agreement with a previous result. This method 
reduces the number  of  parameters  to one eighth of  that  
in the usual three-dimensional  analysis. The 9a struc- 
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ture ( N / M  = 4/9)  has the same five-dimensional space 
group and its five-dimensional structure is i somorphic  
with that  of  the 7a structure. 

Introduction 

There exist many  binary alloys with one- and two- 
dimensional  long-period superlattices (Cowley,  Cohen,  
Sa lamon & Wuensch,  1979). These structures are 
regarded as modulated structures with incom- 
mensurate  or commensura te  wavevectors  and can be 
analyzed on the basis of  a unified theory of  the 
modulated structure analysis (de Wolff, 1974; Janner  
& Janssen,  1977; Yamamoto ,  1982a). In this theory,  
an n-dimensionally modulated structure is described in 
a (3 + n)-dimensional  space and its symmetry  is 
designated by a (3 + n)-dimensional space group. The 
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one-dimensional antiphase-domain structure of CuAu 
II has been refined by the application of this theory 
(Yamamoto, 1982b) and its efficiency has been 
confirmed. This method is more efficient for the 
structure analysis of a two-dimensional ant!phase- 
domain structure with a simple modulation: the number 
of parameters is much less than that of the usual 
three-dimensional analysis and the structure can be 
analyzed by using only the main and observed satellite 
reflections. Here, we consider the two-dimensional 
antiphase-domain structure of A u  2 + x C d  ~ _ x based on a 
five-dimensional space group. 

In many two-dimensional antiphase-domain struc- 
tures, higher-order satellites are not observed but the 
usual three-dimensional analysis requires these reflec- 
tions in the refinements because each parameter almost 
equally affects all satellite reflections. On the other 
hand, in the method employed here, each parameter 
strongly contributes to only limited satellite reflections 
and we can ignore the parameters which mainly 
contribute to the non-observed satellite reflections and 
we can drop these reflections in the refinement. 

Methods of obtaining multi-dimensional symmetry 
and possible modulation wave forms were shown in the 
case of a three-dimensional modulation of wustite 
Fel_xO (Yamamoto, 1982c). The symmetry operators 
of a multi-dimensional space group are obtained from 
the symmetry operators of the average structure and 
the extinction rules. Their rotational parts are obtained 
from the point group of the average structure and the 
transformation matrix of the wavevectors. All the point 
groups of the average structures are the subgroups of 
the cubic m3m or the hexagonal 6/mmm. We treated 
wustite as an example with a simple three-dimensional 
modulation and with the highest symmetry m3m. In 
this paper, we treat a hexagonal system with the highest 
symmetry and carry out the five-dimensional analysis 
of the known structure of Au2Cd by use of the X-ray 
data of Watanabe & Iwasaki (1982). The present study 
clarifies the close relation between a series of 
Au2 + x C d ~ _ x alloy structures. 

Five-dimensional description 

Diffraction patterns observed in Au-Cd alloys with 
about 33% Cd are assigned by using five integers h I - 
hs: h = hla* + h2b* + hae* + h4 k~ + h5 k2, where a*, 
b*, e* are the unit vectors reciprocal to the unit vectors 
of the hexagonal cell with a = 2.919 (4), c = 
4.818 (7) A and the wavevectors k ~, k 2 are represented 
by N(a* + b*)/M, N ( -  a* + 2b*)/M (see Fig. 1). N/M 
changes continuously from 3/7 to 4/9 with the 
chemical compositions, indicating that the structures 
are incommensurate (Hirabayashi, Yamaguchi, 
Hiraga, In•, Sat• & Toth, 1970). The present analysis 
is concerned with the case ofN/M = 3/7 (7a structure). 

0o001 • 

b ~ •e o• 

! A ~ ' ° ° ° .  'o • . 
• OlOOT.. • 

• a" Ib~oo . 

Fig. 1. A schematic view of the diffraction pattern in Au2+xCd~_x. 

The structure is commensurate (Watanabe & Iwasaki, 
1982) but all the reflections are uniquely assigned by 
the above formula because the higher-order satellite 
reflections are very weak and not observed 
(Yamamoto, 1982a). The extinction rule is h a = 2n for 
h~h~h3h40. This is explained by a hyper-glide plane 
mentioned below. The symmetry operators in a 
five-dimensional space group are obtained from the 
symmetry operators in the three-dimensional space 
group of the average structure and the above extinction 
rule (Yamamoto, 1982c). 

The average structure is the hexagonal close-packed 
structure with P63/mmc. As the corresponding five- 
dimensional space group, we take the space group 
p~63/mmc which is generated by (S~I0,0,½,0,0), 6 l m m  

(Or310,0,0,0,0), (II0,0,0,0,0) and generating elements 
for the lattice translations, where we use the space- 
group symbol of de Wolff, Janner & Janssen (1981). 
Symbols for the symmetry operators are the same as 
those in the previous paper (Yamamoto, 1982c). For 
the rotational part, we use the symbol in the three- 
dimensional space group because the first 3 x 3 part of 
the rotation matrix is the same as in the usual 
three-dimensional point group. The extinction rule is 
explained by the hyper-glide plane (O'd310,0 ,½,0,0)  in 
this space group. 

There is one independent Au/Cd site in the average 
structure which is located at the special position 2(_c) of 
P63/mmc: 1 2 ~,~,~, the site symmetry of which is 6m2. 
Corresponding to this group, the site symmetry group 
in the five-dimensional space is generated by 
(S]I0,1,½,0,0) and (trval 1,1,0,0,0). This constrains the 
forms of the modulation waves (Yamamoto, 1982c). 
Neglecting higher-order harmonics, we have 

U(.~4 , .~5)  = UI[--(a + b) sin -~4 + b sin (--rs) 

+ a sin (xs - x4)] + U2[(-a + b) cos x4 

- (a + 2b) cos (-v5 - -~4) 

+ (2a + b) cos (--rs)] (1) 

for the displacement wave, where u(J4,Js) is the 
displacement vector parallel to the usual three- 
dimensional superplane: u(kl.~t, k2.~) gives the 
displacement of the atom located at ~ in the funda- 
mental structure. U~ is the amplitude of the triple 
longitudinal waves and U2 is the amplitude of the triple 
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transverse waves lying in the ab plane. Similarly, we 
have 

P(-~4,-r~) = P0 + Pl[ c°s -r4 + cos (--rs) (2) 

+ c o s  (-x4 + x5)] 

and 

B(-r4,-rs) = B0 + n l [ c ° s  -~4 + c o s  ( - -~5 )  

-t- c o s  ( - ' ~ 4  --b .~5) ] 

(a) 

(3) (b) 
(e) 

Table 1. The positional (x 104), thermal (A 2 x 102) and 
occupational ( x 102) parameters 

The  s t anda rd  deviat ions  are in parentheses .  (a) Present  work .  (b) 
W a t a n a b e  & Iwasak i  (1982).  (c) H i r abayash i  et al.  (1970)  (the 9a  
structure).  

U l U 2 B o B l Po Pl  

25 (11) 5 (8) 127 (8) 30 (7) 67 - 2 2  (4) 
32 4 141 63 67 - 2 8  

70 - 3 1  

for the occupation probability of Au and the isotropic 
temperature factor. [P(k I . x, k 2. 2) and B(k ~ . 2, k 2. 2) 
represent the occupation probability and temperature 
factor in three-dimensional space. The occupation hi h2 h3 h4 h5 Fo Fc 
probability of Cd is given by 1 - P(.~4,.~5).] Observed 

1 0 0 0 0 199 193 
satellite reflections were only hlh2h 3 4- 10, hlh2h30 4- 1 2 0 0 0 0 133 137 
and hlhEh 3 4- 1 ¥ 1. Higher-order harmonics which are 3 0 0 0 0 159 168 

1 1 0 0 0 251 259 not included in (1)-(3) mainly contribute to non- 2 ! 0 0 0 lOO i04 
observed higher-order satellite reflections and can be 2 2 0 0 0 133 136 
dropped in the refinement. The model obtained contains 0 0 2 0 0 313 293 

1 1 2 0 0 216 239 only two parameters for each of the displacements, 0 0 4 0 0 248 235 
isotropic temperature factors and occupation prob- 1 1 4 0 0 199 188 
abilities. One of these, Po, is fixed at 2/3 from the 0 0 6 0 0 178 157 
chemical composition of the crystal used. The number 1 0 1 0 0 258 272 

1 0 2 0 0 178 168 
of parameters is one eighth of that in the usual analysis 1 0 3 0 0 225 227 
(Watanabe&Iwasaki ,  1982). 1 0 4 0 0 122 119 

1 0 5 0 0 172 160 

Refinement of  the structure 

The refinement was carried out by using a restricted 
least-squares program (written by the author) in which 
the sum of the squared weighted R factor and squared 
penalty function is minimized in order to keep the 
occupation probability within the physically reasonable 
range 0 < P(x4,.~5) < 1 (Yamamoto, 1981). The 
penalty function (PF) used is 

PF = 2/49) [ r(9c4,.~5)] 2 , 
Pl, P2 = I  

where r(.~4,.~5) and a value P(.~4,.~5) for P(.~4,~5) < 0, 
P(~4,~5) - 1 for 1 < P(.~4,.~5) and zero otherwise 
and -r4 = kl. ] + Vl/M, x5 = k2. i + v2/M (2 being 
the positional vector in the fundamental structure). 
An appropriate value is taken for g in the refine- 
ment. The refinement was initiated from UI = U2 = 
0.001, B 0 = 0 . 5 A  2, B~ = 0 A  2, P~ = - 0 . 1  and an 
anomalous-dispersion correction and isotropic second- 
ary-extinction correction (Kato, 1976) were made 
in each cycle. Unit weight was used for all reflec- 
tions. In the first three cycles, P~, a scale and an 
extinction parameter were refined with g = 1 and in the 
succeeding four cycles, all parameters were refined 
using all observed reflections (23 main and 31 satellite 
reflections). The final refinement was made with g = 4 
for three cycles, giving a conventional R factor of 

Table 2. Observed and calculated structure factors 
(x4) 

1 0 6 0 0 78 76 
2 0 1 0 0 198 213 
2 0 2 0 0 115 123 
2 0 3 0 0 177 179 
2 0 4 0 0 92 92 
2 0 5 0 0 132 129 
3 0 2 0 0 147 155 
0 1 0 0 - 1  25 14 
I 1 0 0 - 1  30 25 
2 1 0 0 - I  9 9 
0 0 0 1 0 38 23 

h I h 2 h 3 h 4 h~ F o F c 

1 I 0 - 1  0 40 29 
2 0 0 - 1  1 17 13 
0 1 0 1 - 1  15 10 
1 0 0 1 0 13 10 
2 1 0 - 1  0 16 14 
3 0 0 - 1  1 25 25 
1 1 0 1 - 1  19 19 
2 0 0 1 0 7 8 
3 1 0 - 1  0 I1 I1 
2 1 0 1 - 1  5 8 
2 0 0 0 1 12 12 
1 2 0 0 - 1  13 14 
3 0 0 0 1 15 18 
2 2 0 0 - 1  17 20 
1 1 0 1 0 16 17 
2 2 0 - 1  0 23 25 
3 1 0 - 1  1 8 9 
0 0 2 1 0 30 23 
1 1 2 - 1  0 33 28 
1 I 2 1 0 15 16 
2 2 2 - 1  0 21 23 
0 0 4 1 0 23 21 
1 1 4 - 1  0 25 24 
1 1 4 1 0 13 15 
2 2 4 - 1  0 16 20 
0 0 6 1 0 15 17 
1 1 6 - 1  0 17 19 

0.065. This is comparable with the R factor of 0.063 
for the observed reflections of Watanabe & Iwasaki. 
The R factors for the main and satellite reflections were 
0.049 and 0.17. The final parameters are listed in 
Table 1 together with the Fourier amplitudes obtained 
from the result of Watanabe & Iwasaki (1982) and the 
result of the 9a structure (see below). The structure 
factors are shown in Table 2. As shown in Table 1, the 
result is essentially the same as that of Watanabe & 
Iwasaki. In particular, the amplitude of the transverse 
wave, U 2, is very small and the displacement wave is 
approximated by the superposition of three longitudinal 
waves. 

Five-dimensional description of  the 9a structure 

We consider another commensurate structure with 
N/M = 4/9. The three-dimensional space group of this 
9a structure, P63/mcm, is different from that of the 7a 
structure, P6a/mmc. However, this appears to have the 
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same five-dimensional space group because the electron 
diffraction patterns are similar to those of the 7a 
structure except for the difference in the wavevectors 
and N / M  varies continuously with the chemical 
composition (Hirabayashi et al., 1970). This suggests 
that the five-dimensional space groups of these two 
structures are the same and a series of incommensurate 
structures with 3/7 < N / M  < 4/9 have the same space 
group. These are expected to have similar structures. 

In order to confirm this, we calculated the Fourier 
amplitude of the 9a structure given by Hirabayashi et 
al. (1970) and confirmed that the distribution of Au 
atoms is well approximated by (2). This shows that 
their five-dimensional structures are isomorphic with 
each other. The Fourier amplitudes P0 and P~ of this 
structure are listed in Table 1. 

Summary and concluding remarks 

We carried out a five-dimensional analysis of the 7a 
structure based on the theory of modulated structure 
analysis and obtained essentially the same result as in 
the more sophisticated analysis based on the usual 
three-dimensional symmetry. It was shown that the 9a 

structure has the same five-dimensional space group as 
the 7a structure and has a similar five-dimensional 
structure. The present paper demonstrates that the 
refinement can be carried out by using only observed 
reflections and parameters mainly contributing to these 
reflections. This saves much computing time and 
reduces effort in analyses of commensurate structures 
without accompanying higher-order harmonics. 

The author thanks Professor H. Iwasaki for furnish- 
ing X-ray data of Au2Cd and for valuable discussions. 
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Atom Distributions in Sigma Phases. 
I. Fe and Cr Atom Distributions in a Binary Sigma Phase Equilibrated at 

1063, 1013 and 923 K* 
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Abstract 

Extensive single-crystal Mo Kct Bragg-diffraction data 
sets were collected and analyzed from sigma (a) phases 
with compositions near Cr4sFe52 that had been an- 
nealed at three temperatures (1063, 1013 and 923 K) 
within the region of a-phase metastability. Precisions of 
measurement varied from <1% for the relatively few 
intense diffraction maxima to ~10-20% for the more 
numerous weak reflections. No clear indication of the 

* Research sponsored by the Division of Materials Sciences, US 
Department of Energy, under contract W-7405-eng-26 with the 
Union Carbide Corporation. 

0567-7408/83/010020-09501.50 

absence of a center of symmetry was found in any data 
set, or in any of the results obtained by least-squares 
refinements of parameters assuming space group 
P42/mnm. Average site-occupation parameters of 
limited precision (+5-10%) were derived for the five 
independent sites occupied in the a structure during the 
refinement based on each data set. The crystal from the 
alloy equilibrated at 1013 K was also studied using 
synchrotron-radiation (SR) Bragg diffraction at photon 
energies just below the Fe and Cr K absorption edges, 
where relative differences ( A l f l / I f l )  in the atomic 
scattering factors of Fe and Cr approach 20-35%. 
(For Mo Ka radiation, A l f l / I f l  is 8-1 1%.) Site 
occupation parameters derived from the less numerous 
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